Segregation of hydrogen to defects in nickel using first-principles calculations: The case of self-interstitials and cavities

نویسندگان

  • Damien Connétable
  • Yu Wang
  • Dôme Tanguy
چکیده

A detailed first-principles study of the interactions of hydrogen with different point defects in Ni is presented. In particular we discuss the trapping of multiple hydrogen atoms in monovacancies, divacancies and at the self-interstitial (dumbbell). We show that, contrary to the previous theoretical works, the dumbbell cannot trap H atoms. In the case of a single vacancy, the segregation energy is found approximately equal to ÿ0:26 eV, in excellent agreement with implantation anneal experiments and thermal desorption spectra in the literature. This segregation energy is obtained for the relaxed octahedral (labeled O1) and tetrahedral (T1) positions inside the vacancy, with a slight site preference for O1. Outside the vacancy, the binding energy becomes lower than 20 meV after the second shell of octahedral sites (O2). The H2 molecules are never stable inside the small vacancy clusters. Therefore, VHn clusters show a maximum trapping capacity of six H atoms. In the case of the divacancy, the H segregation energy can be as low as ÿ0.4 eV. This reconciles theory and experiments by attributing the deepest trap energies to multiple vacancies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of diffusion equation for point defects

An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...

متن کامل

First-principles calculations of self-interstitial defect structures and diffusion paths in silicon

A first-principles pseudopotential study of neutral self-interstitial defects in silicon is reported, together with calculations for Pandey’s concerted exchange mechanism for selfdiffusion. The energies and structures of the fully relaxed hexagonal, tetrahedral, split-〈110〉, ‘caged’ (Clark S J and Ackland G J 1997 Phys. Rev. B 56 47), split-〈100〉, and bond-centred interstitials are calculated u...

متن کامل

Quantum Theoretical studies of Nanostructures onto Hydrogen Adsorption on V-surface

We have studied the adsorption processes of H2 on the V (100) surface of Vanadium using self consistent field theory.Dissociative adsorptions of H2 are significantly favored compared to molecular adsorptions. There is a significant charge transfer from the first layer of the vanadium surface to the Hydrogen atoms. Three possible adsorption sites, top, bridge and center site, were considered in ...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017